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Use logarithms to solve the equation 4% = 3(5Y). giving your answer correct to 3 decimal places.

[4]
, | . . . . : N TR
Expand :/~(~1-—,)~——) in ascending powers of x, up to and including the term in x~, simplifying the
- 2x
coeflicients. [+]
in
- - v
Find the exact value of J xTsin 2y dx. 15]
0
In \”)2
The curve with equation y = ——— has two stationary points. Find the exact values of the coordinates
X
of these points. (6]
(i) Prove the identity cos 46 —dcos20 =8 sint6 - 3. 4]

(i) Hence solve the equation
cos40 = 4cos26 + 3,

for 0° < 0 < 360°. [+]

The variables x and 6 satisfy the ditterential equation

dy )
(3 +cos 26)1—6 = xsin 26,

d
and it is given that x = 3 when 8 = Jlrn

(i) Solve the differential equation and obtain an expression for v in terms of 6. 171
(ii) State the least value taken by x. [1]

. A+ 7+ 4
Let fx) = - e
(2x + Y(x +2)
(i) Express f(x) in partial fractions. [5]

4
(1i) Show that J f(x)dy =8 —1In3. [5]
0
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The diagram shows the curve y = cosecx for 0 < x < 7 and part of the curve y = e™". When x = «. the
tangents to the curves are parallel.

. . o I . dy
(i) By differentiating ——, show that if v = cosec x then d— = —cosec.xcot.x. 3]
sin.x X

(ii) By equating the gradients of the curves at x = «. show that

a

o
a=tan™! ( - ) .
sina

(iii) Verity by calculation that a lies between | and 1.5. 2]

(iv) Use an iterative formula based on the equation in part (ii) to determine « correct to 3 decimal
places. Give the result of each iteration to 5 decimal places. [3]

9 The points A. B and C have position vectors, relative to the origin O. given by OA =i+ 2) + 3k,
—> —
OB = 4j + k and OC = 2i + 5j — k. A fourth point D is such that the quadrilateral ABCD is a

parallelogram.

(i) Find the position vector of D and verify that the parallelogram is a rhombus. [S]

(ii) The plane p is parallel to OA and the line BC lies in p. Find the equation of p, giving your answer
in the form ax + by + cz = d. [5]

- . . . ) . .. .
10 (a) Showing all necessary working, solve the equation iz~ + 2z — 3i = 0, giving your answers in the
form .x + 1y. where x and y are real and exact. {5]

(b) (i) Onasketchof an Argand diagram, show the locus representing complex numbers satisfying
the equation |z| = {z — 4 - 3i|. [2]

(i) Find the complex number represented by the point on the locus where | z] is least. Find the
modulus and argument of this complex number. giving the argument correct to 2 decimal
places. [3]



