1 Find the term independent of \(x \) in the expansion of \(\left(x - \frac{1}{x^2}\right)^9 \). \([3]\)

2 Points \(A, B \) and \(C \) have coordinates \((2, 5), (5, -1)\) and \((8, 6)\) respectively.

(i) Find the coordinates of the mid-point of \(AB \). \([1]\)

(ii) Find the equation of the line through \(C \) perpendicular to \(AB \). Give your answer in the form \(ax + by + c = 0 \). \([3]\)

3 Solve the equation \(15 \sin^2 x = 13 + \cos x \) for \(0^\circ \leq x \leq 180^\circ \). \([4]\)

4 (i) Sketch the curve \(y = 2 \sin x \) for \(0 \leq x \leq 2\pi \). \([1]\)

(ii) By adding a suitable straight line to your sketch, determine the number of real roots of the equation

\[2\pi \sin x = \pi - x. \]

State the equation of the straight line. \([3]\)

5 A curve has equation \(y = \frac{1}{x - 3} + x \).

(i) Find \(\frac{dy}{dx} \) and \(\frac{d^2y}{dx^2} \). \([2]\)

(ii) Find the coordinates of the maximum point \(A \) and the minimum point \(B \) on the curve. \([5]\)

6 A curve has equation \(y = f(x) \). It is given that \(f'(x) = 3x^2 + 2x - 5 \).

(i) Find the set of values of \(x \) for which \(f \) is an increasing function. \([3]\)

(ii) Given that the curve passes through \((1, 3)\), find \(f(x) \). \([4]\)
The diagram shows the function \(f \) defined for \(0 \leq x \leq 6 \) by
\[
\begin{align*}
x & \mapsto \frac{1}{2}x^2 \quad \text{for} \quad 0 \leq x \leq 2, \\
x & \mapsto \frac{1}{2}x + 1 \quad \text{for} \quad 2 < x \leq 6.
\end{align*}
\]

(i) State the range of \(f \). [1]

(ii) Copy the diagram and on your copy sketch the graph of \(y = f^{-1}(x) \). [2]

(iii) Obtain expressions to define \(f^{-1}(x) \), giving the set of values of \(x \) for which each expression is valid. [4]

The diagram shows a rhombus \(ABCD \). Points \(P \) and \(Q \) lie on the diagonal \(AC \) such that \(BPD \) is an arc of a circle with centre \(C \) and \(BQD \) is an arc of a circle with centre \(A \). Each side of the rhombus has length 5 cm and angle \(BAD = 1.2 \) radians.

(i) Find the area of the shaded region \(BPDQ \). [4]

(ii) Find the length of \(PQ \). [4]
9 (a) A geometric progression has first term 100 and sum to infinity 2000. Find the second term. [3]

(b) An arithmetic progression has third term 90 and fifth term 80.

 (i) Find the first term and the common difference. [2]

 (ii) Find the value of \(m \) given that the sum of the first \(m \) terms is equal to the sum of the first \((m + 1) \) terms. [2]

 (iii) Find the value of \(n \) given that the sum of the first \(n \) terms is zero. [2]

10

The diagram shows triangle \(OAB \), in which the position vectors of \(A \) and \(B \) with respect to \(O \) are given by

\[
\overrightarrow{OA} = 2i + j - 3k \quad \text{and} \quad \overrightarrow{OB} = -3i + 2j - 4k.
\]

\(C \) is a point on \(OA \) such that \(\overrightarrow{OC} = p \overrightarrow{OA} \), where \(p \) is a constant.

 (i) Find angle \(AOB \). [4]

 (ii) Find \(\overrightarrow{BC} \) in terms of \(p \) and vectors \(i, j \) and \(k \). [1]

 (iii) Find the value of \(p \) given that \(BC \) is perpendicular to \(OA \). [4]
The diagram shows parts of the curves $y = 9 - x^3$ and $y = \frac{8}{x^3}$ and their points of intersection P and Q. The x-coordinates of P and Q are a and b respectively.

(i) Show that $x = a$ and $x = b$ are roots of the equation $x^6 - 9x^3 + 8 = 0$. Solve this equation and hence state the value of a and the value of b. [4]

(ii) Find the area of the shaded region between the two curves. [5]

(iii) The tangents to the two curves at $x = c$ (where $a < c < b$) are parallel to each other. Find the value of c. [4]